
 

I. INTRODUCTION

lectro-optic identification (EOID) sensors[1,2]

are transitioning to the fleet and will be used as
a short-range identification tool for mine-like
contacts from long-range sensors. The present
operation of the EOID sensors uses an operator for
identification. Whereas the human operator is
unparalleled in detecting and recognizing objects of
interest, there are still some limitations which may
be needed to distinguish between mine types, such
as differentiating a 68 inch object from a 72 inch
object in a still image or moving waterfall display.
To help overcome some of these weaknesses and
improve the mine identification process, computer
aided identification (CAI) and automatic target
recognition (ATR) algorithms are being developed1.
In addition to building a foundation towards the
long-term goal of fully autonomous operation, these
algorithms can be used to queue operators of
potential mine-like objects within the data as well as
to segment and compute vital geometric information

1 Three efforts (CSS, Northrop Grumman Ocean Systems, and Raytheon
Electronic Systems) have been funded by the Office of Naval Research,
code 322-OP (Dr. Steve Ackleson) under the EOID research program

on manually flagged objects of interest. The
operator can then use this supplementary
information for a more accurate identification.   The
near-term objective is to develop and implement
these CAI/ATR algorithms into a real-time console
and/or a post mission analysis (PMA) tool that can
be used in the FY05 Organic Mine Warfare future
naval capability (FNC) demonstration2.

II. ANOMOLY DETECTION

Due to the highly variable turbid nature of coastal
waters, coupled with sometimes heavily cluttered
environments and a vast array of sea bottom types
(sandy, rocky, muddy, coral reef, etc), underwater
electro-optic object detection provides a formidable
challenge. To overcome these obstacles, a
background anomaly approach has been chosen.
This approach is designed to be effective in
cluttered and non-uniform background
environments, yet makes no assumption on
turbidity (sharp edges versus blurry outlines) or on
the sea bottom type (other than there is some
differentiation between an object and its local
background).  

2 For more information see
http://www.onr.navy.mil/sci_tech/ocean/MCM/  
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This approach searches for anomalies of a certain
specified size and shape that sticks out from the
local background. The first step produces an
anomaly image using background strips that
essentially acts as a filter to remove large objects,
although small objects with high SNR may pass
through. The next step is to convolve the anomaly
image with shape filters.  The output image from the
convolution is then tested for peak values to obtain
candidate detections. After this, the candidate
detections are segmented and have basic geometric
features computed. To reduce the number of
detections passed to a classifier, small and/or
irregularly shaped objects (e.g., length to width ratio
is extremely skewed) are filtered out to obtain a list
of final detections. These key steps are discussed in
more detail in the following sections.

A. Anomaly Image

The anomaly image is generated by rotating least
squared error (LSE) background strips of specified
lengths, excluding the region of interest, computing
and testing for the best background fit with
minimum error as the criteria. Using the line
orientation corresponding to the best background fit,
a subsequent LSE fit is next extended across the
region of interest, where the background anomaly is
defined as the difference between the fitted line and
the actual values on a pixel-by-pixel basis
throughout the region of interest. These concepts
are illustrated in Figure1. This process is applied on
a pixel-by-pixel basis throughout the entire image to
fill in the anomaly image.

Figure 1.  (A) Illustration of the best background fit.
The background segments that include the target
boundary (0,45,135) will have higher LSE errors,

whereas the line segment that includes background
only (90) will have minimal error yielding the best
background fit. (B) Looking at a profile through the
best background line fit, the anomaly values are
illustrated as the difference between the extended
LSE fit over the region of interest (ROI) and the
actual values.

After the anomaly image has been generated it is
convolved with shape filters. These shape filters
include rectangular strips (rotated in four
orientations) for elongated targets with lengths and
widths commensurate with the background strip
lengths, and circular regions for near circular targets
with diameters corresponding to the background
strip diameters. Detection is then achieved by
searching for peak values in the output image from
the shape-filtered convolution. Figure 2 shows an
example of an image with a non-uniform background
and its corresponding anomaly image, shape-filtered
convolved output image, and peak detection.

Figure 2.  (A) Original image, (B) Corresponding
anomaly image, (C) Output image from shape-filter
convolution, and (D) Peak values corresponding to
detection.

B. Segmentation

After detection, the pixel location of the peak
value along with the corresponding orientation is
used to generate a background mask, as shown in
Figure 3A.

Figure 3.  (A) The background mask corresponding



to the centroid and orientation from detection, (B)
The region is thresholded into a binary region, and
(C) The object is enumerated with extraneous
detections removed.

A two-dimensional (2-D) background fit over the
background region (excluding the target region) is
computed by 1-D LSE line fit, first down the image
columns and then across the image rows. This
produces a 2-D near planar surface estimate of the
local background that extends across the target
region. The entire region (background and target
regions) is then thresholded into a binary region
containing either background pixels (black) or target
pixels (white), as shown in Figure 3B. The binary
region is computed by declaring actual pixel values
that are sufficiently away from the corresponding
background fit as target pixels whereas actual pixel
values that are sufficiently close are declared
background pixels. Customized morphology filters
are then implemented across the binary region to
remove noise pixels and to fill small interior holes.
The detected object connected to the location of the
peak value then has its outer boundary pixels
enumerated, with all other objects removed as
extraneous detections, as shown in Figure 3C.

C. Geometric Features

After segmenting and enumerating the peripheral
boundary pixels, second order moments are
computed to obtain the detected objects centroid
and orientation. Whereas the centroid computation
is deemed sufficient, orientation and corresponding
extracted length and width from second order
moments are not considered accurate enough for the
intended purpose of identification. Thus a
subsequent procedure was developed that uses the
second order orientation as an initial guess and
adjusts the orientation based on the best fit of the
objects sides at its midsection. Using this adjusted
orientation, a more accurate length and width can be
computed. The objects length is computed by taking
the difference between the endpoints of a line
parallel to the adjusted orientation through the
centroid, as shown in Figure 4.

Figure 4.  The objects adjusted orientation, along
with computed length and width (target and clutter).

The width can be computed in one of two ways.
The first width computation (computed width) is
the length of the line perpendicular to the adjusted
orientation crossing through the centroid, similar to
the length computation, which is also seen in Figure
4. This represents the quickest implementation, but
may be vulnerable to peripheral artifacts that may
happen to be near the objects centroid (such as an
indentation), as shown in Figure 5A. The second
method (fitted width) is to make a best fit of the
objects sides at the midsection (similar to computing
the adjusted orientation) and then take the difference
between the two sides in a line perpendicular to the
adjusted orientation through the centroid, as shown
in Figure 5B. However, this fitted width may be
vulnerable to circular or elliptical objects that do not
have obvious sides that can be easily fitted to,
depending on implementation. Regardless of which
width computational method is used, the extracted
length and width will be used to help determine
mine type in the identification process (these
computed values will be compared to manually
extracted values for accuracy).

  
Figure 5.  Illustration of (A) The computed width
and (B) The fitted width.



D. Algorithm Implementation

This section describes the implementation of the
background anomaly detection algorithm, using the
methods discussed above, as applied to contrast
images from EOID sensors (the implementation
towards range images will be discussed section III).
Figure 6 shows a flow diagram of this
implementation.

    
Figure 6.  The flow diagram of the background
anomaly detection algorithm (implemented on EOID
contrast imagery).

Because EOID sensors use such high resolution
(needed for identification), the first step in the
algorithm is to downsize the image for initial
detections.  Applying the anomaly detection scheme
on downsized imagery allows more flexibility with
unknown target shapes and sizes, thus allowing
preliminary information (such as length, width, and
orientation) to be computed that can in turn be used
for a more precise detection and segmentation with
the CPU intensive full resolution imagery.  This
allows more candidate detections to be investigated,
with a filter applied to remove small or irregularly
shaped detections.

The preliminary information computed during the
initial detection on downsized imagery includes
object centroid, adjusted orientation, computed
length, and computed width.  Because of
uncertainty of the target characteristics, the
background mask used in the initial detection is
somewhat broad and away from the target. The
process of forming a background mask, thresholding,
segmenting and enumerating, and computing target

information are all applied in the initial detection.
After initial detection, the four computed
preliminary parameters (centroid, orientation,
length, and width) are used to form a local
background mask for final detection and
segmentation, where the process of forming a
background mask, thresholding, segmenting and
enumerating, and computing target parameters is
repeated on full resolution imagery. The background
mask used in the final detection is more local to the
target, and thus more accurate, since target
characteristics are now more certain from the
preliminary information. Once final detection and
segmentation is complete, classifier features can
then be computed in preparation for a classifier, as
discussed in the next section.  Figure 7 shows an
example of the initial and final detections.

         

Full Resolution

Downsized (4:1 )

Figure 7.  An example of the initial and final
detections applied on an image. Note that the final
detection appears more accurate than the initial
detection since the target characteristics are more
certain than in the initial background mask (as well
as better resolution).

III. FUTURE EFFORTS/MODIFICATIONS

Section II discussed the current stage of the
background anomaly detection algorithm whereas
this section describes the (near-term) future efforts.
First, the best-fit criteria will be modified allowing
the use of shorter background strips. Next, the
algorithm will be modified for three-dimensional
data.  Third, the local background estimate used in
conjunction with segmentation will be changed from



single line estimates to piecewise overlapping line
segments.  These three modifications will be
discussed in subsections A, B, and C, respectively.
Once the detection routine is completed, the next
effort will be the development of classifier features
for classification, described in subsection D.
Subsection E discusses a parallel detection routine
that will try to detect the extremely difficult case of
bio-fouled targets (near-zero contrast targets),
whereas subsection F discusses the development of
an identification (classification) scheme using
Zernike moments and neural networks.

A. Modified Best Fit Criteria

The key for successful implementation of the
background anomaly algorithm is to obtain a best
background fit about a targets width orientation, and
not along its length orientation (see Figure 1). This
can be problematic since man-made objects can
often be smooth resulting in a low LSE error for the
background strips (where minimum error determines
the best background fit). Thus to avoid this
condition, the length of the background strips were
designed to be longer than the longest expected
target (see Figure 1). Not only does this restrict the
length of the expected target, but also the longer
background strips can extend beyond the local
background into nearby clutter, thus reducing the
detection performance of this approach. This
condition will be circumvented by using a
normalizing parameter that indicates the presence of
object edges within the region of interest, as shown
in Figure 8.  

   
Fig 8.  To reduce the length of the background strips
(and thus improve detection performance), the
criteria for best background fit will be normalized by
the LSE error of a Line fit within the ROI.

The best background fit criteria will then be the
ratio of LSE errors of the background strip line fit
normalized by the LSE error of a line fit within the
region of interest. Thus the emphasis of the best
background fit will be minimal error on the
background strips (indicating the presence of
background only in the background strip regions)
with maximal error over the region of interest
(indicating the presence of object edges within the
region of interest). This will allow the use of much
smaller background strip lengths closer to the region
of interest, removing the effects of nearby clutter
and obtaining more accurate local background
information, thus yielding improved detection
performance.

B. Three Dimensional Detection

Implementation towards EOID STIL3 3-D data
will be applied in a similar approach to the contrast
image (2-D) case.  In this case, the 3-D data will be
rendered into a 2-D range map and a 2-D contrast
image. The same process of detection will then be
applied to both the contrast image and the range
map (with customization) in parallel, fusing the two
separate detection results together as a final step
(most likely with an inclusive ORing). Classifier
features will then be computed utilizing the range
information (3-D features) supplementing the 2-D
contrast features, providing a more confident
identification.

C. Piecewise background fit

The current background fit in the segmentation
process uses 1-D LSE lines, first down the image
columns then across the image rows, to produce a 2-
D near planar surface.  This technique for
background estimate may be suitable for initial
detection where the background mask is formed
somewhat away from the target, but does not
accurately represent local nonlinear surfaces near the
target.  Using overlapping piecewise line segments
instead of single line segments will allow nonlinear
local variations of the background tangent to the
target to be more accurately represented in the

3 Streak Tube Imaging LIDAR, or STIL, is a 3-D EOID sensor
developed by Areté Associates from Tucson, Arizona.



background fit.  This in turn will yield a more
accurate segmentation of the target from its local
background, particularly in the presence of tangent
clutter.

D. Classifier Features

The focus after completion of the detection
routine will be the development of discriminatory
classifier target features. First, features will be
developed to discriminate between man-made
objects and clutter, such as the measure of convexity
shown in Figure 9.

  
Figure 9.  Classifier features will be developed, such
as the measure of convexity, to help discriminate
between man-made objects and mine-like clutter.

The key to the development of these features is
an accurate enumeration (sequence) of the peripheral
boundary pixels.  These features will be used to
reject mine-like clutter (mine-like in size).  Next,
advanced geometric features (beyond length, width,
and area) will be developed that can describe the
detected target relative to mine identification.  This
will include features that describe the targets front-
end and back-end (coned shaped versus flat ends),
midsection shapes, etc. The key to the development
for such features is an accurate orientation that
clearly locates the midsections of the front and back
ends of the target. The information generated from
these geometric features will be compared to a
known database of measurements to help determine
the identification of a detected mine type. For
successful implementation of this approach to
identification, it will be necessary to geometrically
correct4 the imagery from rectangular pixels to

4 Geometric correction here assumes a stable tow-body platform giving
negligible roll, pitch, and yaw effects.

square pixels before computation of the classifier
features.

E. Bio-Fouled Detection

The background anomaly detection scheme
searches for objects that can be distinguished from
the local background, but will ultimately fail as an
objects contrast approaches the contrast of its local
background (i.e., the target and background become
indistinguishable), a level to be determined by
implementation. One case where background
anomaly detection will almost certainly fail is for
bio-fouled targets. In this case, the target and the
local background become covered by some kind of
biological or sediment layer causing near zero
contrast, making automated detection extremely
difficult.

Operators typically detect these targets by faint
edges produced from the small difference in altitude
between the target and its local background, or by
edges produced from the scouring of sediment in the
local background at the targets sides. Figure 10
illustrates this in an example of a fresh target versus
a bio-fouled target5. In an effort to detect bio-fouled
targets6, the background strips and the region of
interest will be modified to small widths, searching
for the presence of edges instead of the cross-
sectional widths of the targets. The output from this
will be an edge anomaly image, which will be
investigated for the presence of mine-like objects.
This approach specifically assumes that the target
and its local background have similar contrast, but
yield a distinct edge.

5 This target had been bio-fouled in a controlled underwater environment
for two years under the Coastal Benthic Optical Properties (CoBOP)
program, sponsored by ONR (Dr. Steve Ackleson, 322-OP).  This target has
been monitored by the Caribbean Marine Research Center (CMRC) at Lee
Stocking Island in the Exuma Cays, Bahamas.

6 Detection of bio-fouled targets for 3-D STIL data has supplemental
range information, which is invariant to bio-fouling effects.  Thus the bio-
fouled target detection scheme is limited to contrast images only.



Figure 10.  Bio-fouled versus fresh effects on
identical targets (including identical paint).

F. Identification

An identification system[4] is being developed
based on Zernike Moments and neural networks.
This scheme uses Zernike Moments to extract an
orthogonal feature set that provides a set of robust
features invariant to object rotation, translation and
scaling.  Zernike moments have been shown to be
substantially less sensitive to additive noise than
other moments[5]. The target identification system
will use shape-dependent extracted features from
Zernike moments, along with other target features,
in a two-layer back-propagating neural network
(BPNN) classification system with 18 inputs, 30
hidden layer neurons and 3 output neurons.
Preliminary work using synthetic data has shown
promising results.

IV. SUMMARY

A background anomaly approach for object
detection has been developed for electro-optic
identification (EOID) sensors, which is designed for
cluttered and non-uniform backgrounds but makes
no assumptions on turbidity conditions or
background terrain. This scheme uses best-fit
background strips to filter background anomalies
that are similar in size and shape to mine-like
objects. Once detected, candidate objects are
segmented using a two-dimensional (2-D) LSE fit to
the local background, followed by geometric feature
computation in preparation for classification. The
current detection scheme will be modified to include
testing for the presence of edges within the region of
interest in order to reduce the length of the
background strips, thus improving performance.

Future efforts also include the development of
advanced geometric features (beyond length, width,
and orientation) that can be used as a discriminator
in identifying mine types. Other classifier features
will also be developed, such as the measure of
convexity, which can discriminate between man-
made objects and mine-like clutter. A parallel
detection effort for bio-fouled targets will modify
the background anomaly detection by using shorter
background and region of interest strips to search
for object edges instead of their cross-sectional
widths.  The output from the background anomaly
detection routine will then be used with a target
identification system that has been developed using
Zernike moments and a back-propagating neural
network classification system.
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